Nonparametrick-nearest-neighbor entropy estimator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

kn-Nearest Neighbor Estimators of Entropy

For estimating the entropy of an absolutely continuous multivariate distribution, we propose nonparametric estimators based on the Euclidean distances between the n sample points and their kn-nearest neighbors, where {kn : n = 1, 2, . . .} is a sequence of positive integers varying with n. The proposed estimators are shown to be asymptotically unbiased and consistent.

متن کامل

Nearest-neighbor entropy estimators with weak metrics

A problem of improving the accuracy of nonparametric entropy estimation for a stationary ergodic process is considered. New weak metrics are introduced and relations between metrics, measures, and entropy are discussed. Based on weak metrics, a new nearest-neighbor entropy estimator is constructed and has a parameter with which the estimator is optimized to reduce its bias. It is shown that est...

متن کامل

Depth-first k-nearest neighbor finding using the MaxNearestDist estimator

A description is given of how to use an estimate of the maximum possible distance at which a nearest neighbor can be found to prune the search process in a depth-first branch and bound k-nearest neighbor finding algorithm.

متن کامل

Evaluating Emissions Trading Using a Nearest (Polluting) Neighbor Estimator

This paper uses a nearest neighbor matching estimator to examine the effects of an emissions trading program. An important perceived advantage of “cap-and-trade” programs over more traditional, more prescriptive forms of regulation is that enhanced compliance flexibility and cost effectiveness can make more stringent emissions reductions politically feasible. A potential disadvantage is that a ...

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2016

ISSN: 2470-0045,2470-0053

DOI: 10.1103/physreve.93.013310